19075478

INST0072 Logic and Knowledge Representation
Dr Rob Miller
Assessment 1

Find enf $\neg[(\neg$ gamble \wedge work) \rightarrow happy]
$\neg[(\neg$ gamble \wedge work $) \rightarrow$ happy $]$
$\equiv \neg[\neg(\neg$ gamble \wedge work $) \vee$ happy $]$ implication
$\equiv \neg \neg(\neg$ gamble \wedge work $) \wedge \neg$ happy $/$ de Morgan \downarrow
$\equiv \neg$ gamble \wedge work $\wedge \neg$ happy $\checkmark \quad$ Cancellation
cnfset $-[(-$ gamble \wedge work $) \rightarrow$ happy $]=\{$-gamble, work, \neg happy $\}$

Show that KB $=(\neg$ gamble \wedge work) \rightarrow happy

By the Resolution Soundness and Completeness theorem it is sufficient to show that:
KB \cup cnfset $\neg[(\neg$ gamble \wedge work $) \rightarrow$ happy $] \vdash_{\text {res }} \perp$

A derivation of this is as follows:
(1) (\quad rich V-healthy V happy)
(2) (stressed V healthy),
(3) (gamble $\vee \neg$ stressed),
(4) (\neg work V gamble V rich),
(5) (-gamble)
(6) (work)

(7) (-happy)

by assumption from $K B \cup\{\neg[(\neg$ gamble \wedge work $) \rightarrow$ happy $]\}$
by assumption from $K B \cup\{\neg[(\neg$ gamble \wedge work $) \rightarrow$ happy $]\}$
by assumption from KB $\cup\{\neg[(\neg$ gamble \wedge work $) \rightarrow$ happy $]\}$
by assumption from KB $\cup\{\neg[(\neg$ gamble \wedge work $) \rightarrow$ happy $]\}$
by assumption from KB $\cup\{\neg[(\neg$ gamble \wedge work $) \rightarrow$ happy $]\}$
by assumption from $K B \cup\{\neg[(\neg$ gamble \wedge work $) \rightarrow$ happy $]\}$
by assumption from KB $\cup\{\neg[(\neg$ gamble \wedge work $) \rightarrow$ happy $]\}$
(8) (healthy V gamble)
(9) (healthy)
(10) (-rich Vhealthy) x
(11) (\neg stressed)
)
\checkmark
by (2), (3), resolution
by (5), (8), resolution
(12) (gamble $\overparen{\Lambda}$ rich)

- (13) -rich
- (14) (- work Λ gamble)
(15) (gamble)
(16) \perp by (14), (6), resolution
by(15), (5), resolution by (12), (5), resolution by (13), (4), resolution

Using the domain of discourse $\mathrm{D}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$ and signature $\langle\},\{ \},\{$ admiral /1, boat/1, captain/2, boss/2\}〉

Give one interpretation I + that satisfies and another interpretation I - that does not satisfy the following sentence:
$\forall \mathrm{x} .[\operatorname{admiral}(\mathrm{x}) \rightarrow \forall \mathrm{y}$.(boat(y$) \rightarrow \exists \mathrm{z} \cdot[$ captain $(\mathrm{z}, \mathrm{y}) \wedge \operatorname{boss}(\mathrm{x}, \mathrm{z})])]$

Convert the sentence $\forall x$.[admiral $(x) \rightarrow \forall y$. $(\operatorname{boat}(y) \rightarrow \exists z$. [captain $(z, y) \wedge$ boss $(x, z)])]$ into prenex normal form:
$\forall x .[\neg \operatorname{admiral}(\mathrm{x}) \vee \forall \mathrm{y}(\neg$ boat $(\mathrm{y}) \vee \exists \mathrm{z}$. [captain $(\mathrm{z}, \mathrm{y}) \wedge \operatorname{boss}(\mathrm{x}, \mathrm{z})])$ $\forall x \forall y \exists z .[\neg \operatorname{admiral}(x) \vee \neg \operatorname{boat}(y) \vee[\operatorname{captain}(z, y) \wedge \operatorname{boss}(x, z)])$

Eliminating \rightarrow

 Moving Quantifiers Out

GOOD WORK ON THE WHOLE, WITH JUST ONE ORTWO ERRORS -IE ME If YOU NEED MORE EXPLANATION.

